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ABSTRACT 

In this paper we consider the question of finite generation of profinite 

groups. We study the class of profinite groups which are inverse limits 

of wreath products of alternating groups of degree _> 5. We prove that 

the probability of generating such inverse limits by two elements is strictly 

positive and tends to 1 as the degree of the first factor tends to infinity. 

Our method of analysis requires a survey of the maximM subgroups of 

iterated wreath products  of alternating groups. Although we have been 

unable to classify these precisely we do obtain upper  bounds for the num- 

ber of conjugacy classes of maximal subgroups which we believe to be of 

independent interest. 

1. I n t r o d u c t i o n  

In this paper we shall investigate whether profinite groups which are inverse 

limits of wreath products of alternating groups can be generated by two elements. 

Here wreath products are taken with respect to the natural action of alternating 

groups. Let 

W = lim(Amk W r . . .  Wr Am, ) 

where ral,m2,.. . ,  mk,..,  are integers >_ 5 and Am is the alternating group of 

degree ra be such an inverse limit. We shall show that the probability p(W) of 

generating W by two elements is strictly positive and depends primarily on the 
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probability of generating the first factor Am1 by two elements. In fact, we shall 

prove (in Theorem 1) that  

p (W)  >_ (1 - c )p (Aml  ) 

where e --* 0 as ml  --* co. This result coupled with the fact that  p(Am) "* 1 as 

m ~ co (cf. [3]) proves that p(W)  ~ 1 as ml  --~ co. 

We shall first calculate the probabilities for each of the iterated wreath products 

WI := Aml,  W2 := Am2 Wr W1, . . . ,  W,  := Am~Wr W~_I . . . .  

and then show that  

p (W)  = lim p(W~). 
~ "--4 0 0  

The calculation of p(W~) in turn relies heavily on the determination of conjugacy 

classes of maximal subgroups of Wr which project onto the top group W~-I. 

The proof of the theorem therefore produces, along the way, estimates for upper 

bounds for the number of conjugacy classes of such maximal subgroups - -  an 

analysis which is of considerable interest in itself. 

In the following section we set up the necessary basic machinery. We prove (in 

Lemma 2) that  if Y is the wreath product 

Y := A m W r ~ X  

where m > 5 and X is transitive on a finite set ~, and if all the maximal subgroups 

M of Y which project onto X are conjugate to M1, M 2 , . . . ,  Mk then 

k 
1 )p (X ) .  

p(vl >_ (1-  IF: i----1 

An investigation of such maximal subgroups is therefore made in the third section 

of this paper. The results obtained are then used to prove the probability theorem 

in the final section. 

2. P r e l i m i n a r i e s  

Let 

G = l im G~ 
+ . -  
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be an inverse limit of finite groups Gn. Then G is a profinite group and hence a 

compact Hausdorff topological group. 

For i > 1 define 

Ni := ker(r i lc)  

where 7rila: G ~ Gi is the projection map. Define a topology T on G (called the 

p r o f i n i t e  t o p o l o g y  on G) by taking as basis of neighbourhoods of the identity 

the family of normal subgroups {Ni}ieN of G. A little thought shows that  the 

profinite topology on G is the same as the topology induced on G from the 

product topology on 1-I~N Gn. 

A Haar measure # that  can be put on the group G can be extended in a natural 

way to define the product measure (also denoted by #) on G × G (cf. [5], §58, 

§35). 

A pair of elements gl, g2 • G is said to g e n e r a t e  G topo log i ca l l y  if the 

subgroup (gl, g2) of G generated by gl and g2 is a dense subgroup of G. We shall 

denote this by 

(gl, g2) = G. 

Define 

s := {(gl,g=) • c × C l  (gl,g2) = c } .  

For a finite group X let p (X)  be the probability of generating X by two elements. 

With the above definitions we can now prove the following lemma. 

LEMMA 1: The set S is measurable and 

, (s )  = lim p(C/N,).  ,(C). 

Proo.e: Define 

Sr :---- { (g l ,g2)  E G x Gl(g l ,g2)N,  = G}. 

Since Sr is a (finite) union of cosets of Nr x Nr, it is open and hence measurable. 

A little calculation shows that for every r > 1, 

tz(Sr) = p(G/Nr)  . #(G). 

It is easy to see that 

S=NS,. 
rEN 
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Therefore S is measurable. Furthermore, 

Isr. J. Math. 

p(S)  : l imoop(G/N~ ) • I t (G)  

as #(S~) is a monotonically decreasing sequence. | 

We next set up some notation and prove a lemma which will be crucial for 

the proof of our theorem. Let X be a group acting transitively on a finite set 

:= { 1 , 2 , . . . , n } .  Let 

Y := A m W r a X  := K . X  

with m _> 5 and K = A~,  the base group in the wreath product. (For definition 

of wreath products see §2.3 of [2].) Elements of the wreath product Y will be 

denoted by f x  with f E K and x C X. Though an explicit description of X 

is not required immediately, X will, in due course, be taken to be an iterated 

wreath product of alternating groups 

Amk Wr Am~_l Wr .. • Wr Am1 

with n = m k m k - l ' " m l  and each mi _> 5. Therefore X and Y will both  be 

groups of the same type, viz. i terated wreath products of alternating groups of 

degree _> 5. 

LEMMA 2: I f  the max imal  subgroups M of  Y such that  

M . K = Y  

are conjugate to M1, M2, . . . , Mk then 

k 

i = l  

Proo~ If  X cannot be generated by two elements then p ( X )  = 0 and the lemma 

is vacuously true. I f p ( X )  > 0 choose elements x l ,  x2 E X such that  (x:,  x2) = X.  

For i = 1 , 2 , . . . , k  let 

Li := {(fl ,  f2) e K x K I f i x 1  and f2x2 belong to a conjugate of M~}. 

Then 

[Li[ _ [Mi n KI2IY: M~l 
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as IY: Mil is the number of conjugates of Mi in Y. 

Define 

L := {( f l , f2)  l ( f lx l , f2x2)  ¢ Y}. 

Then 
k k 

ILl ~ I U L~I ~ ~ IM~ n KI21y: M¢I 
i : 1  i=1 

Irl k 
= 1212 ~ IM~I 

i----1 

because IMi n KI = IMgI/[21. Therefore 

]L~I = I{(fl, A) I(Axa,Ax2) = Y}I 

> IKI2 IYI k 
_ - ixi--~ ~ IM~I 

i=l 

so that 

] { ( f l Y 1 ,  f2Y2) l ( f l Y l ,  f2Y2)  = Z } [  :> ( [ / ( [ 2  IYI k IXI2 ~ IM~I)[XI2p(X) • 
i=1 

Thus, we get 

1 
p(Y) = ] V ~ I { ( / i y , , A y 2  ) e Y × Y I (Ayl ,Ay2)  = Y}I 

k 

>-~Y---Pl ([YI2- IYI EIMd)p(X)I=, 

k 
1 )p(X) 

i=1 

which is what we wanted to show. 1 

Since M • K = Y we must have 

M/MNK =" X. 

Also since X acts transitively on the set ~t, the projections of M N K into the n 

factors of K must be conjugate. Let lr~ be the projection of M N K into the i-th 

factor of K and let 

T~ := (M n K)lr~ _< A,~ 
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for 1 < i < n .  Then 

Mr' IK<_TlxT2x . . . xT ,~ .  

Since the groups Ti for 1 < i < n are all conjugate subgroups of Am we can 

differentiate three cases for investigation depending on whether Ti = Am or 

{1} < T~ < Am or T~ = {1}. We shall study each of these cases in turn in the 

next section. 

3. T h e  t h r e e  cases  

3.1 CASE (i). For some i E ~, the group Ti = Am. Then Tj = Am for all j E f~, 

so that  M D K is a subdirect product in the base group. But m > 5, so Am is 

simple and a subdirect product of a family of non-abelian simple groups can be 

expressed as a direct product, say 

M N K = D l x D 2 x . . - x D .  

where 

f~ = fh  U~2 U . . .  "U~8 

is a partit ion of ~2 and each D~ (=~ Am) is the diagonal subgroup of the direct 

product of the family {Tj [ j  E fli}. (See [2], Lemma 2.3 for a proof.) 

Define an X-congruence p on ~ as follows: two distinct elements wl and w2 of 

are congruent modulo p if and only if they belong to the same ~21 for some i in 

the set {1, 2 , . . . ,  s}. It is obvious that,  with this definition, p is an equivalence 

relation. To show that  p is an X-congruence, it is sufficient to show that  for every 

x E X and for every i E {1, 2 , . . . ,  s} there exists some j E { 1 ,2 , . . . ,  s} such that  

f l i x - -  ~j .  Given x E X,  there exists an element f x  in M for some f E K 

(because M projects onto X).  Now D1,D2,...,D~ are the minimal normal 

subgroups of M N K. So conjugation by f x  permutes these groups amongst 

themselves. If ( f x ) - lD i ( f x )=  Dj for i , j  E { 1 ,2 , . . . , s } ,  a little calculation 

shows that ~ ix  = ~j .  This proves that p is an X-congruence on ~. 

Therefore, we can write 

M N  K = D1 x D2 x . . .  x D.  

where p is a non-trivial X-congruence on ~, A := ~/p, ]A] = s and each D~ is 

the diagonal subgroup of A r where r := p(w) for some w E ~. 
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If n = s.l ,  then each diagonal subgroup Di is of the form 

Di = { (x i ,  x i ~ 2 , . . . ,  x i ~ l ) l x i  E A m  and ~j E Aut(Am)} 

where Aut(A,~) denotes the automorphism group of Am. Hence elements of 

M N K are of the form 

( X l ,  X l ~ 0 2 ,  • • . ,  Xl~Ol ,  X2,  X 2 ~ l + 2 ,  • • . ,  X 2 ~ 2 1 ,  • • • ,  X s ,  X s ~ ( s _ l ) l + 2 ,  • • . ,  X s ~ s l )  

where xi  E A m  and ~j E Aut(Am). Since the inner automorphisms of Am give 

rise to a single conjugacy class of such subgroups of K,  given an X-congruence 

p as defined earlier, the number of conjugacy classes of subgroups of the form 

D1 x D2 x .-.  x D~ in K is at most IOut(Am)l n-8 where Out(Am) denotes the 

outer automorphism group of Am. As is well known, IOut(Am)l = 2 if m # 6 

and 4 if m = 6. 

Furthermore, given a subgroup D1 x D2 × ' -"  × D8 of K,  either it corresponds to 

no maximal subgroup of Y or it corresponds to just one, namely, its normaliser in 

Y. If there exist maximal subgroups of Y of this type let us denote the maximum 

number of distinct conjugacy classes of such subgroups by do and a lower bound 

to the index of such subgroups in Y by i0. Then we have 

{ 2n-~.r i f m ¢ 6  
do_~ 4n_~. r if m - - 6  

where r is an upper bound to the number of non-trivial X-congruences p on ~, 

and 

io = IAml '~-I/'t = (m!/2) ~-8. 

LEMMA 3: 

P r o o f  

do < 1 
io m n/2 , for all m ,  n >_ 5. 

Since p is non-trivial, s <_ n / 2  and so 

1 1 

m n _ s  - mn/2"  

It therefore suffices to prove that 

do ~_ i o / m  n - s  = ( ( m  - 1)!/2) ~-s. 
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Substituting the expression for do it follows that  we only need to show that  

(4! ~n--s 1 6 ~ - ~  if  m ¢ 6 
~.2"/ " 2 " - "  = 

r <_ (5! ~n--s 1 15 n-8 if m 6 

where r is an upper bound to the number of non-trivial X-congruences p on [2. 

By transit ivity of the action of X on ~2 it follows that  an X-congruence p on [2 

is determined by one of its blocks, which is a subset of [2. Thus, 

r _< number of subsets of [2 

= 2 '~ = 4 '~12 _< 6 n12 <_ 6 n-8. I 

3.2 CASE (ii). For some i E [2, the group Ti < Am and T~ ¢ {I}. Then 

Tj < A,~ for all j E [2. We will first prove a lemma. 

LEMMA 4: M normalises the group T 1 × T2 × . . .  x Tn. 

Proof: Let t := ( t l , t2 , . . . , t ,~)  E TI ×T2 x . . . × T n  a n d x  E M. We want to 

show that  

x - l t x  E T1 x T2 x . . .  x T,~. 

Tha t  is, for each i = 1, 2 , . . . ,  n 

(x-ltz)Tri ~ T~. 

For j E [2 let i := j x .  Since tj E Tj there exists an element k E K n M such that  

k r j  = tj. Then 

( x - ~ k x ) ~  = ( k ) ~ - ~  = ( k ) ~  = t j  = ( t ) ~ j  = ( t ) ~ - ~  = ( ~ - ~ t ~ ) ~ .  

But MAK<]M and so x - l k x  E M A K .  This proves that  for every i E {1, 2 , . . . ,  n} 

there is an element ki E K M M such that  (x-l tx)Th = (x-lk~x)~h E Ti. II 

From the last lemma we have 

M < N y ( T l  x T2 x . . .  x T~) 

where Ny(T1 x T~ x . . .  x T~) denotes the normaliser of (T1 × T2 x . . .  × Tn) in 

Y. But M is maximal in Y, so we must have 

M = N y ( T ~  × T2 x . . .  × T . ) .  
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Since all the groups T1, T2, • •. ,  Tn are conjugate, we can take them all to be equal 

to a subgroup, say T of A,~. Then 

M = N y ( T  ~) = (NA,~ ( T ) ) ~ . X  = NA, ,  (T)  Wr~ X. 

By maximali ty  of M in Y it follows that  NA,,  (T)  = T and hence 

M = T W r a X  

where T is a maximal  proper subgroup of Am. Furthermore, 

IY: M [  = lAin: TI '~ _> m n 

as Am has no subgroup of index less than m. 

To find an upper bound to the number of distinct conjugacy classes of maximal 

subgroups of this type in Y it suffices to find an upper bound to the number of 

distinct conjugacy classes of maximal subgroups T of Am. As a consequence of 

the O 'Nan-Scot t  theorem (cf. [8], p. 329) we know that  T can be of the following 

six types. 

1. T H E  INTRANSITIVE TYPE: T = (Sl x Sk) N Am with m = l + k and l ¢ k. 

2.  T H E  IMPRIMITIVE TYPE: T = (Sl Wr Sk) N Am with m = lk and l, k > 1. 

3. THE AEFINE TYPE: T = AGL(k,p)  N Am with m = p k  p a prime. 

4.  T H E  DIAGONAL TYPE: T = (Hk . (Ou tH  × Sk)) N A,~ where H is a non- 

abelian simple group, k >_ 2 and m = IHI k-1. 

5. T H E  PRODUCT ACTION TYPE: T = (Sz Wr Sk) N A,~ with m = l k, k > 1. 

6. THE ALMOST SIMPLE TYPE: Here T is such that  H<~T <_ Aut (H)  with H 

non-abelian simple, H ~ Am and T acting primitively on a set of size m. 

Let us denote the maximum number of distinct conjugacy classes of maximal  

subgroups of type r in A m with 1 < r < 6 by d~ and a lower bound to the index 

of such subgroups in W by i~. Then, by the comments made earlier, it follows 

that  

ir ~ m n 

for 1 < r < 6. Let us now try to estimate dr for 1 < r < 6. 

The number of ways of choosing an integer I between 1 and ( m - 1 ) / 2  is at most 

(m - 1)/2, so that  dl _< (m - 1)/2. The number d2 equals the number of ways of 
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choosing an integer I such that  l I rn, l ~ 1, m, so that  d2 = (d(m) - 2) < (m - 2) 

where d(m) is the number of positive integral divisors of m. There can be at most 

one way of expressing m as a power of a single prime so that  we have d3 ~ 1. 

The number d4 is at most twice the number of non-abelian simple groups H we 

can find such that  m = IHI k-1 for some k _> 2. By the 'Power order theorem of 

Cameron and Teague' ([6], Theorem 6.1), we know that  there can be at most 2 

such simple groups. Finally, d5 is at most twice the number of distinct subgroups 

of the form (Sl Wr Sk) of Sm with m = l ~ and k > 1 which is certainly less than 

d(m) - 2. Therefore, d5 _< 2(d(m) - 2) < 2(m - 2). It  follows therefore that  

5 

dr _< 4m - 2. 
r = l  

If T is a maximal subgroup of type 6 in Am then T = NA,~ (H). So there can 

be at most as many distinct subgroups of Am. of this type as there can be simple 

groups contained in Am. Since all non-abelian simple groups are two-generator 

groups (cf. [1], §3) there can be at most (m!/2) 2 of them contained in Am. 

Therefore, d6 _< (m!/2) 2. It  must be mentioned here that  this bound is probably 

very far from the truth. It  is however quite adequate for our purposes. 

L E M M A  5: 
d___66 < ~ 1 / 2  m ( n - 6 )  f f m  > 21 
i 6 - -  [ 2 / m  ~ otherwise 

where d6 is as defined earlier and i6 = [Y: M[. 

Proof: Though much better  estimates are now available we will use a result of 

Praeger and Saxl [7], which states that  IT[ < 4 m if T is a primitive permutat ion 

group of degree m not containing Am. Therefore, 

[Am: TI >_ - -  

Using Stirling's approximation, we get 

m~ 
2 2 m +  1 • 

< 
i 6  - -  x m /  

If m > 8e then it follows that  

d6 < 1 
i6 --  2 r e ( n - 6 ) "  
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Since e < 2.72, all values of m greater than 21 satisfy the inequality m > 8e. 

A complete list of primitive groups of degrees less than 20 is given in [9]. By go- 

ing through this list for each degree m in turn and discarding those groups which 

are cyclic or alternating of degree m and those which contain odd permutations 

or a cyclic or elementary abelian minimal normal subgroup we see that there 

can be at most 3 conjugacy classes of primitive groups T of type 6 contained in 

Am for m _< 20. Considerations of maximality of such groups further reduce the 

number to 2. The case when m = 21 can be tackled separately (for example, by 

using [4]) to obtain the same answer. Since i6 _> m n for any maximal subgroup 

in case (ii) this completes the proof of the lemma. I 

3.3 CASE (iii). For every i for 1 < i < n, the group Ti = {1}. Then M n K = 

{1} and since M . K  = Y,  it follows that M is a complement for K in Y. The 

base group does not always have complements which are maximal subgroups of 

the wreath product (for example, see [2], pp. 97-99). Rather than try to  estimate 

numbers of conjugacy classes of maximal complements (which appears to be a 

very difficult problem) we shall drop the maximality condition and derive upper 

bounds for the number of conjugacy classes of all complements because such 

upper bounds ought to be of interest in their own right. 

Define 

i7 := [Y: M[ = [K[. 

From now on we shall assume X to be an iterated wreath product of alternating 

groups 

X = Am~ Wr Am~_~ Wr . . .  WrAm~ 

where n = m k . . . m l  and each m~ > 5. 

Suppose that there exist elements g, h E X that generate X, and are such that 

(i) g is semi-regular on ~/ (that is, it has no fixed points and all its cycles are 

of the same length), and 

(ii) h is of order 2 in its action on 9/. 

Under the above hypotheses we can prove the following lemma. 

LEMMA 6: I l l  is the number of transpositions of h on ~ then the number dv of 

conjugacy classes of complements of the base group K in Y is at most ]K]/[Am[ t. 

Proof: Let C be a complement for K in Y. Then C N K = {1} and C.K = Y.  

Also there exist elements f ,  f '  E K such that fg  and f ' h  generate C. Since C 
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is a complement ,  we must  have ( fg)r  = (f ,h)2 = 1 where r is the order of g. If  

(wl ws . . .  wr) is an r-cycle o f g  on ft and ai := f (wi )  for 1 < i < r then  ( fg)~ = 1 

implies a ia /+ l  . . .  aral . . .  a / -1  = 1 for all possible values of i. But  

( ( a l  1 , ( a S a l ) - l ,  . , . , ( a rar - l ' ' ' a l ) - l ) l ) ( ( a l , a s , . . . , a r ) ( c a l c a 2  " ' "  car))  

( ( a l ,  a2al , . . . ,  a r a r _ l ' "  a l ) l )  ---- ( (arar_ l . . . a l ,  1 , . . . ,  1)(Wl w2 "-" car))  

---- ( l(calws " '"  car)). 

(Note t ha t  t e rms  like (al ,  a 2 , . . . , a r )  are sequences in Am while (Wl w2 " "  wr) 

is an r-cycle in X . )  Therefore,  conjugat ing by a suitable element of K we m a y  

suppose  t ha t  g E C so tha t  

C = Ig , / ' h ) .  

Now ( f ' h )  ~ = 1 implies tha t  if (51 5s) is a t ransposi t ion  of h in ~ and bl := 

f ' (b i )  for i = 1, 2 then  bib2 = 1. Therefore ei ther one of bl and b2 determines  

the second. Also, if 5 is any fixed point  of h in ~ then ( f ' h )  2 = 1 implies t ha t  if 

b := f ' ( 5 )  then  b s = 1. 

I t  follows tha t  d7 the number  of conjugacy classes of complements  of K in 

Y is at  mos t  the number  of ways of choosing an element f '  E K satisfying the 

requi rements  obta ined  in the last paragraph.  Thus  

d7 <_ IAmlZt ~-2~ 

where t is the number  of elements  x in Am such tha t  x 2 = 1. Though  t can 

be shown to be much smaller  the worst  possible bound for t will suffice for our 

purposes.  Pu t t i ng  [g]  -- [A,~[ n and [t] _< [Am[ in the expression above we obta in  

a proof  of  the  lemma.  | 

We have now to show tha t  there exist e lements  g and h in X satisfying the 

hypotheses  made  before the s t a t ement  of the last l emma  and such tha t  l is large 

(equivalently, with h having relat ively few fixed points).  We begin by set t ing up 

some more  notat ion.  As before, set 

W1 :~- Am 1 

act ing on a set ~1 of size nl  := m l ,  and define inductively for k > r > 2, 

Wr := Am~ Wr r.~_ 1 Wr-1 
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acting on a set E~ of size n~ := mrlE~_l I = r n ~ m ~ _ l . . . m l .  Then X = Wk, 

F t = E k a n d n = n k .  

Every element wr • W~ induces a permutation on E~ and hence also, by 

restriction, on E~ for 1 < s _< r. Let the permutation that an element x of 

X (= Wk) induces on E~ be denoted by x~ for 1 < r < k. 

The sets E~ for 2 < r < k + 1 can be expressed as products Fr x E~-I  where 

F~ is a set with n~ elements. We define p to be the equivalence relation induced 

by the natural projection of F~ x E~-I on Er-1. Then two elements (~'1, 51) and 

(~'2, 52) of E~ are members of the same equivalence class of E~ under p if and 

only if 51 = 52. For 5 • E~_ 1 we denote the class 

of Er by E~(6). Given an integer t, define 

t if t is odd 
tt := t /2  otherwise. 

Also let 
~ , ~ n, 

n t : = m t m t _  1 . . m  1 2st 

where st is the number of even numbers in the sequence ml,  m 2 , . . . ,  mt.  Let Ir 

be the number of tranpositions that hr induces of 2r.  Let n ~ := n~, l := Ik and 

s := sk. We can now prove the following lemma. 

LEMMA 7: There exist  elements g, h E X that  generate X and are such that  

(i) g has 2" disjoint cycles each o f  length n ~ on ~t (and is hence semi-regular 

on f~) and 

(ii) h is o f  order 2 and has I transpositions in its action on ~ where l >_ (n/2) - 
22k-1. 

Proof: We shall define the elements g and h inductively, using induction on the 

length k of the iterated wreath product X. To simplify notation we will assume 

that for each r, 1 < r < k, the set 

{1, 2 , . . . ,  mr} 

is an equivalence class of Er under p. Let 

m~ = 2l~ + e 
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where e E {1, 2, 3, 4} and l~ is even. Define elements at, br E Am~ as follows: 

J" (1, 2, . . . ,  mr) if mr is odd 
a~ := [. (1, 3, , mr - 1)(2, 4, . . . ,  mr) otherwise 

and 

b r : =  

(1, Ir + 1)(2, Ir + 2 ) . . .  (It, 2/r) 

if e is 1 or 3 

(1, 2)(3, 4 ) . . . ( 2 / r -  3, 21r - 2 ) ( 2 / r -  1, 21r + 1) 

if e is 2 

(1, 2)(3, 4 ) . . . ( 2 / ~ -  5, 2lr - 4 ) (2 /~ -3 ,  21r + 1)(21r-  1, 2lr + 3) 

if e is 4. 

The commas are included for greater clarity. Since 

{ (1, lr + 1, 2/r + 1) 
a71brarbr := (1, 21~ - 1, 2lr, 21r + 1, 2) 

(1, 21r - 3, 21r - 2, 2lr + 1, 2) 

i f m r = 2 1 r + e , e = l , 3  
i f m r = 2 1 r + 2  
i f m r = 2 1 r + 4  

it is not difficult to show that the group generated by a~ and Jar, br] is double 

transitive and hence primitive. Using Theorems 13.3 and 13.9 of [10] or directly it 

can then be proved that the group generated by ar and [a~, br] is the alternating 

group A,n~ for mr >_ 5. Hence, for mr _> 5, 

(at, br) = Amr. 

Define 

g l  :---- a l  and h i  : =  bl. 

Then gl and hi generate Am~. Trivially gl has 2 "~ disjoint cycles each of length 

n~ on ~1, h21 = 1 and hi has 11 _> (ml/2)  - 2 transpositions on ~1. This starts 

the induction. 

Therefore, let us assume, as inductive hypothesis, that we have already defined 

elements gr-1 and hr-1 in Wr_l ,2  < r < k that generate Wr-1 and are such 

that 

(i) gr-1 has 2 s~-I disjoint cycles each of length ' n r _  1 on ~..r-1 and 

(ii) hr-1 is of order 2 and has 1~-1 transpositions in its action on ~r-1 where 

/r-1 ~ ( n r - 1 / 2 ) -  22(~-1)-1. 
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We want to show that we can find elements g~ and hr in Wr that  generate Wr 

and satisfy the requirements on their cycle structures obtained from (i) and (ii) 

above. 

A ~ - I  Let J := .~  be the base group in the wreath product 

W~ = Amr W r ~ _ t  Wr-1. 

Define an element f E J as follows. For every n'_l-Cycle (wl w2 . . .  w,e_ 1 ) of 

gr-1 on Er-1 let 
at if i = 1 

f(wi) := 1 otherwise. 

Then define 

gr :=  ( f g r - 1 )  e Wv. 

It follows that every n~r_l-cycle of gr-1 gives rise to a m~n~_l-Cycle of g~ if mr 

is odd and to two disjoint mrn~_l/2-cycles of gr if mr is even. It is easy to see 

that the element gr E Wr so defined is semi-regular and satisfies the inductive 

hypothesis. 

Let us now define the element hr. Define an element f~ E J as follows: 

{br  i f~hT_l  = 
fl(w) := 1 otherwise. 

Let 

hr :~- ( f lhr -1) .  

Let us first calculate the number of fixed points hr has in Z~. With the above 

definition, if hr-1 fixes a point w E E~-I then the class Zr(w) has at most 4 

fixed points while if hr-1 moves w then Er(w) has no fixed points at all. Since 

by inductive hypothesis (ii) h~-i fixes at most 2 2(r-1) points of ~ - 1  it follows 

that hr has at most 2 2r fixed points in its action on Nr. So, hr induces at least 

l~ transpositions on ~ where 

Ir ~_ ( n r / 2 ) -  2 2r-1.  

Thus the elements gr and h~ satisfy the inductive hypotheses on their cycle 

structures. 

It only remains to show that 

X~ := (g~, h,)  = W~ ( :  J .  W~-I). 
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Since gr-1 and h~-i generate the whole of Wr-1 we know that X~ projects onto 

the whole of W~-l. So we only need to show that J < X~. Since g~-I is of order 
¢ 

' it follows that g~r-~ fixes every point of E~-i  and induces the permutation n r - - 1 ,  

ar on every equivalence class of ~ .  Let us consider the element 
! ! 

~-1- -  7~r--IL x := 9'} ~-l) n~g,, n~ 

of E~. It can be expressed as 

X = ( f " h r 2 _ i )  = f , I  

where 
f"(w)  := ~ a71b~'a"br if wh,._i = w 

( 1 otherwise. 

Since ar and Jar, br] generate Amr it follows that the group 
n t - 

contained in JOX~ projects onto one of the factors (~  Am~) of J .  It follows from 

this and the transitivity of X~-i  on E~-I that J N X~ is a subdirect product of 

a family of non-abelian simple groups {X~ l a E E~} with each X~ -~ Am~. As 

before, such a subdirect product can be expressed as a direct product, say 

J 0 Xr = Di x D2 x . . .  x D~ 

where 

E~-i  = fh  U f~2 U -...U f/8 

is a partit ion of E~-I and each D~ (~- Am~) is the diagonal subgroup of the direct 

product of the family {Xa I a E f~i}. We need to show that each f~i is a singleton. 

If not, consider the block fli containing w where w is left fixed by h~-i.  Since 

E ~ - i  = -~ ~ e ~ _ ~ E r - i ( f )  

is the minimal Xr.congruence on ~ - i  the block fli must contain a complete 

equivalence class Zr - i (~ )  for some f E E~-2. Also, every element of J n X ~  must 

induce the same element (up to conjugation) on each of the classes arising from 

members of f~i. But x E J O X~ does not. So 

J<X~ 

and this completes the induction. 

Setting g = gk and h = hk it is almost immediate that  g and h satisfy all the 

requirements of the lemma. | 
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4. A p r o b a b i l i t y  t h e o r e m  

After an investigation into the possible conjugacy classes of maximal subgroups 

M of Y which are such that M .  K = Y in the last section we now use the 

information obtained there in Lemma 2 to evaluate p(Y)  in terms of p(X) .  

LEMMA 8: _if 

X = A,~ k Wr Amk_l Wr . . .  Wr Am1, 

acting on ~2 w i t h  Ifll  = n = m k m k - 1  " " m l ,  each mi >>_ 5, ma >>_ 7 and 

Y := A m W r f ~ X  

with m > 5 then 
> (i 4 
- _ P(Y) 

Proof.. From Lemma 2 we have 

7 

We put the values of dr and ir for 0 < r < 7 obtained in the last section in the 

inequality above. When m > 21 we get 

7 1 4m - 2 1 1 y-~dj  < + + - - +  
j : 0  ij - ~ m n 2m(n-6) mn/5 

where the first term comes from Lemma 3, the second is an upper bound for 

Ej=15 obtained from the observations just before Lemma 5, the third term 

comes from Lemma 5 and the fourth from Lemma 6 together with the facts that  

i7 = IK] and l _> (n/2) - 22k-1 ~ n /5  if ml  _> 7. Now, each of the first, second 

and third terms in this case is less than the fourth, so that we have for m > 21 

7 
4 : - - <  

j=0 zj -- mn/5" 

For m _< 21 we have by a similar argument 

7 1 (4m - 2) + 2 1 ~--~dj < + + - -  

5 = 0  i7 - m '~ m,V5 

1 1 1 
<_ + + m./---- z 

3 < - -  
- ran~5 
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so that  in all cases we have 

~-~dj< 4 
j=o ij - mn/5" | 

Finally, we use all that  we have obtained so far to obtain a theorem regarding 

the probability of generating an inverse limit of wreath products of alternating 

groups by two elements. Let 

W := lim(Am, W r . . .  Wr Am1) 

where m l , m 2 , . . .  ,mk , . . .  are integers > 5. 

Being an inverse limit of finite groups W is a profinite group. Compactness of 

W and Lemma 1 imply that  as n --~ oc the probabilities p(W~) tend to #(S),  the 

measure of the set 

S = { (g l ,g2)  e W X W I <gl, g2> = W }  

with respect to the normatised (that is, by tak ing/z(W) = 1) Haar  measure 

that  can be put on W. If we define p(W) to be the probability of generating W 

by two elements then it follows that  p(W) = #(S). 

Iterating the probabilities by repeated application of Lemma 8 we have, 

k--1 

p(Wk) _> H 1 - __(ml-,,...-,O/s p(W1) 
i----I I1~i+1 
k--1 

_ _ > H (  1 4 ] p(W1 ) m,)/5,  
i=1 

k--1 
1 

(1--4 E 5(mlm-~...ml)/5 )P(Wl) 
i=l 

2 _> (1-  
provided ml  _> 7. The cases ml  = 5 and ml  = 6 can be tackled directly to 

obtain similar bounds. 

Let us denote by p ~  the limit of the probabilities p(Wk) as k ~ e~. Then 

p~ = p(W) by the comments made earlier. The calculations above and the fact 

that  p(W1) = p(Aml) > 0 for all values of ml  imply that  p(W) > 0. Moreover, 

from ([3], Theorem 2) we know that  p(Am) ---, 1 as m ~ c~. What  we have 

just proved shows that  p(W) ~ 1 as ml  --* e~. This completes the proof of the 

theorem promised in the introduction. 
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THEOREM 1: Let 

W = l im(A,~  W r - . .  Wr Am1) 

where ml ,  m 2 , . . . ,  m k , . . ,  are integers >_ 5. The probability that any  two ele- 

ments  chosen at random from W generate W topologically is strictly positive. 

Furthermore, 

p(W) > (1 

where e --~ 0 as m 1 --* o~. 
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